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In many algebra textbooks, after defining the category of chain complexes of R-modules
and associated homology functors, the author notes that the same construction holds when
replacing R-mod with a general abelian category. However, rarely does the author carry out
this construction in that general setting. The purpose of these notes is to carry out that
construction in as much detail as possible.
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1 Abelian Categories

We assume the reader is familiar with the categorical notions (and associated universal
properties) of kernels, cokernels, monomorphisms, epimorphisms, zero objects, products, and
functors. We also assume familiarity with abelian groups and the category of left modules
over a commutative ring R with unity (this category is denoted R-mod). In these notes, a
ring R will always be a commutative ring with unity.

In many ways, the notion of an abelian category is an attempt to describe what makes
R-mod such a good category in purely categorical terms, without reference to sets and
elements.

Definition 1.1. An abelian category is a category A in which

1. For any two objects X, Y , Hom(X, Y ) is an abelian group; in particular, there is a zero
morphism. Composition of morphisms distributes over addition,

f(g + h) = fg + fh (f + g)h = fh+ gh

assuming all of the morphisms have the appropriate domain and codomain.

2. Every morphism f : X → Y has a kernel and a cokernel.

3. There is a zero object.

4. For every pair of objects X, Y , the product X × Y exists.

5. Every monomorphism is the kernel of its cokernel, and every epimorphism is the cok-
ernel of its kernel.

Examples: The category of abelian groups forms an abelian category. The category R-mod
forms an abelian category. These are the primary and motivational examples of abelian
categories.

What follows is a list of rather dry but important properties of abelian categories. Note that
each of these lemmas is used in our construction of the homology functor.

Lemma 1.1. Let A be an abelian category and f : X → Y be a morphism. Then f is epi if
and only if for every g : Y → Z so that gf = 0, we have g = 0. Dually, f is mono if and
only if for every h : W → X such that fh = 0, we have h = 0.

Proof. Suppose f is mono, and fh = 0. We know that f ◦ 0 = 0, so by definition of
monomorphism, h = 0. Now suppose that fh = 0 implies h = 0. Then if we have e1, e2 :
W → X such that fe1 = fe2, we get f(e1 − e2) = 0 so e1 = e2, and thus f is mono.

The statement involving epimorphisms is proved by the same argument with compositions
in the other order.

Lemma 1.2. Let A be an abelian category and f : X → Y a morphism with kernel k : K →
X and cokernel c : Y → C. Then k is mono and c is epi.
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Proof. First we show that k is mono. Let g1, g2 : Z → K so that k ◦ g1 = k ◦ g2 : Z → X.
We need to show that g1 = g2. Since f ◦ k = 0, we have f ◦ (k ◦ g1) = 0, so by the universal
property of the kernel, there is a unique morphism Z → K making the following diagram
commute.

X

Z K Y

f

φ

k◦g1

0KY

k

We know that g1 makes it commute, so φ = g1. Since k ◦ g2, g2 also makes this commute, so
φ = g2. Thus g1 = g2, so k is mono.

To show that c is epi, we basically do the same argument with arrows reversed. Let
h1, h2 : C → Z be morphisms so that h1 ◦ c = h2 ◦ c. We need to show that h1 = h2. By
the universal property of the cokernel, there is a unique morphism ψ : C → Z so that the
following diagram commutes.

Y

X C Z

c
h1◦cf

0XC ψ

Then ψ = h1 by uniqueness, and since h1◦c = h2◦c, h2 = ψ again by uniqueness, so h1 = h2.
Thus c is epi.

Lemma 1.3. Let f : X → Y and g : Y → Z. If f, g are both epimorphisms, then gf :
X → Z is an epimorphism. If f, g are both monomorphisms, then gf : X → Z is a
monomorphism.

Proof. First we prove the statement about epimorphisms. Suppose we have maps h1, h2 :
Z → W such that h1gf = h2gf .

X Y Z W
f g

h2

h1

Since f is an epimorphism h1g = h2g. Then since g is epi, h1 = h2. Thus gf is epi. Now
for the statement about monomorphisms. Suppose we have maps m1,m2 : M → X so that
gfm1 = gfm2. Then since g is mono, fm1 = fm2, then since f is mono, m1 = m2, and
hence gf is mono.

Lemma 1.4. Let f : X → Y and g : Y → X be morphisms so that gf = IdX . Then g is
epi and f is mono.

Proof. Suppose we have h1, h2 : X → Z so that h1g = h2g. Then h1gf = h2gf =⇒
h1 = h2, so g is epi. Similarly, if we have m1,m2 : M → X so that fm1 = fm2, then
gfm1 = gfm2 =⇒ m1 = m2, so f is mono.

M X Y X Z
m2

m1 f g

h2

h1
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Definition 1.2. Let A be an abelian category and f : X → Y a morphism. The image of
f is the ker(coker(f)). We can depict this as below, where (coker f, q) is the cokernel of f ,
and (im f, i) is the kernel of q.

X Y coker f

im f

f q

i

Example: In the category of R-modules, the cokernel of f : X → Y is the projection
π : Y → Y/ im f , where im f refers to the usual set-theoretic image of f . The kernel of π is
the injection im f ↪→ Y . Thus the set-theoretic image of f agrees with the category-theoretic
image.

Proposition 1.5. Let f : A→ B be a morphism. There is a unique morphism f̃ : A→ im f
making the triangle below commute, and f̃ is an epimorphism.

A B

im f

f

f̃
i

(The map i is the kernel of the cokernel of f .)

Proof. Note that the existence and uniqueness of f̃ are not the hard part of this; the hard
part is showing that f̃ is epi. To start, here is a roadmap, a diagram that includes all of the
maps involved in the proof.

coker is

A B

im f coker f

ker y Y

f

t

f̃

r

`i

y

ψ

φ

s

Let ` : B → coker f be the cokernel of f , and let ` : B → coker f be the kernel of `, which
is also the image of f . Note that `f = 0 by definition of cokernel. First, we construct f̃ .
By the universal property of im f being the kernel of `, there is a unique map f̃ : A→ im f
making the following diagram commutes.
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B

im f coker f

A

`

0

i

f̃

f

0

This establishes the existence and uniqueness of f̃ , now we just need to show that it is epi.
By Lemma 1.1, we can show that f is epi by taking an arbitrary morphism y : im f → Y
such that yf̃ = 0 and showing that y = 0, so this is what we will do. Let y : im f → Y be a
morphism satisfying yf̃ = 0. Let s : ker y → Y be the kernel of y. By the universal property
of the kernel, there is a unique t : A→ ker y making the following diagram commute. (Note
that ys = 0 because s is the kernel of y.)

im f

ker y coker f

A

y

0

s

t

f̃

0

Note that s and i are mono by Lemma 1.2, so the composition is is mono by Lemma 1.3.
Let r : B → coker is be the cokernel of is. Note that ris = 0. Now observe that

rf = rif̃ = rist = 0t = 0

so by the universal property of the cokernel coker f , there is a unique φ : coker f → coker is
making the following diagram commute.

B

A coker f

coker is

` r

0

f

0

φ

Thus ri = φ`i = φ0 = 0. Since A is an abelian category, is is the kernel of its cokernel r. By
the universal property of is being the kernel of r, there is a unique ψ : im f → ker y making
the following diagram commute.

B

ker y coker is

im f

r

0

is

ψ

i

0
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We then have isψ = i, which implies that sψ = Id since i is mono. This implies that s is epi
(using Lemma 1.4). Then since ys = 0, we get y = 0 by Lemma 1.1. As noted above, since

y was an arbitrary morphism such that yf̃ = 0, this implies that f̃ is epi by Lemma 1.1.

2 Category of Chain Complexes

We assume the reader has already encountered chain complexes of abelian groups or of R-
modules, perhaps in the context of algebraic topology. Chain complexes of abelian groups are
a very useful tool in algebrac topology to give computable algebraic invariants to distinguish
spaces like the sphere and the torus. The point of this section is that chain complexes
still make sense in this generalized setting of an arbitrary abelian category, and that chain
complexes then form another abelian category.

Definition 2.1. Let A be an abelian category. A chain complex C in A is a family of
objects {Cn}n∈Z along with a family of morphisms dn : Cn → Cn−1 so that dn ◦ dn+1 = 0 for
all n.

. . . Cn+1 Cn Cn−1 . . .
dn+1 dn

The maps dn are called differentials. A chain map between chain complexes B∗, C∗ is a
sequence of morphisms fn : Bn → Cn so that the following diagram commutes.

. . . Bn+1 Bn Bn−1 . . .

. . . Cn+1 Cn Cn−1 . . .

δn+1

fn+1

δn

fn fn−1

dn+1 dn

We compose morphisms f = (fn), g = (gn) by g ◦ f = (gn ◦ fn). Now we can form the
category Kom(A) with objects as chain complexes in A and morphisms as chain maps.

Proposition 2.1. Let A be an abelian category. Then Kom(A) is an abelian category.

Proof. We need to check the following things:

1. Composition is associative.

2. There are identity arrows.

3. Hom(X, Y ) is an abelian group.

4. Composition is bilinear with respect to the group structure.

5. There is a zero object.

6. Pairwise products exist.

7. Kernels and cokernels exist.

8. Every monic is the kernel of its cokernel and every epi is the cokernel of its kernel.

6



(1) Associativity of composition follows from associativity of composition in A.
(2) The identity chain map on (Cn, dn) is (IdCn).
(3) Let B,C be chain complexes. If f = (fn), g = (gn) ∈ Hom(C,D) then we define
f + g = (fn + gn). Then Hom(B,C) =

∏
n∈Z Hom(Cn, Dn), which is an abelian group.

(4) Linearity follows from linearity in A. For example,

(f + g) ◦ h = ((fn + gn) ◦ hn) = (fn ◦ hn + gn ◦ hn) = (fn ◦ hn) + (gn ◦ hn) = f ◦ h+ g ◦ h

(5) The zero object is the chain complex with all objects zero and all morphisms zero. For
any chain complex C = (Cn, dn), there is exactly one chain map 0 → C, which has all
morphisms zero. Similarly, it is terminal.
(6) Let B = (Bn, δn) and C = (Cn, dn) be objects of Kom(A). We define something which
we claim will be the product. The nth object of B × C will be the product Bn × Cn. We
have projections πBn : Bn × Cn → Bn and πCn : Bn × Cn → Cn. By the universal property
of the product, there is a unique morphism δn × dn (in A) making the following diagram
commute.

Bn × Cn

Bn−1 Bn−1 × Cn−1 Cn−1

δnπBn
δn×dn

dnπCn

πBn−1
πCn−1

Then we claim that (Bn×Cn, δn× dn) is a categorical product B×C. We have a projection
(Bn × Cn, δn × dn)→ (Bn, δn) which is just (πBn). By construction of δn × dn, the required
square commutes to make this a chain map.

Bn × Cn Bn−1 × Cn−1

Bn Bn−1

δn×dn

πBn−1 πBn−1

δn

Similarly, (πCn) is the projection to C. Now we just need to show that the universal property
holds. Let X = (Xn, ∂n) ∈ Kom(A) with morphisms f = (fn) : X → B and g = (gn) : X →
C. By the universal property of Bn×Cn, there is a unique map hn : Xn → Bn×Cn making
the following diagram commute.

Xn

Bn Bn × Cn Cn

fn gn
hn

πBn πCn

Then we claim that h = (hn) is the unique morphism in Kom(A) making this diagram
commute.

X

B B × C C

f g
h

πB πC
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It is clear that this diagram commutes if h is a morphism, we just need to check that h is a
chain map.

Xn Xn−1 Xn Xn−1

Bn × Cn Bn−1 × Cn−1 Bn × Cn Bn−1 × Cn−1

Bn Bn−1 Cn Cn−1

∂n

hn

fn

hn−1

fn−1

∂n

hn

gn

hn−1

gn−1

πBn

δn×dn

πBn−1 πCn

δn×dn

πCn−1

δn dn

We have dngn = gn−1∂n and δnfn = fn−1dn. By the universal property of the product, there
is a unique map making the following diagram commute.

Xn

Bn−1 Bn−1 × Cn−1 Cn−1

∂nfn=fn−1dn=πBn−1
(δn×dn)hn dngn=gn−1∂n=πCn−1

hn−1∂n

πBn−1
πCn−1

For the right triangle to commute, this unique map must be hn−1∂n. For the left triangle to
commute, the map must be (δn × dn)hn. Thus these maps are equal, so h is a chain map.

(7) Let f : B → C be a chain map and let kn : ker fn → Bn be the kernel of fn. We claim
that the kernel of f : B → C is just the kernel of each fn : B → Cn. (Similar construction for
cokernel.) By the universal property of ker fn−1, there is a unique map ∂n : ker fn → ker fn−1.

Bn−1

ker fn−1 Cn−1

ker fn

fn−1

0

kn−1

δnkn

∂n
0

This makes (ker fn, ∂n) a chain complex and k = (kn) : ker f → B a chain map.

ker fn ker fn−1

Bn Bn−1

Cn Cn−1

∂n

dn kn−1

δn

fn fn−1

dn

We need to show that this chain complex satisfies the universal property of the kernel. Let
X = (Xn, φn) and g = (gn) : X → B so that gf = 0. Then gnfn = 0 for each n, so by the
universal property of ker fn, there is a unique map hn : Xn → ker fn in a suitable diagram.
We claim h = (hn) : X → K is a chain map.
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Xn Xn−1

ker fn ker fn−1

Bn Bn−1

φn

hn

gn

hn−1

gn−1

kn

∂n

kn−1

δn

We know that everything except perhaps the top square commutes in this.

kn−1hn−1φn = gnφn = δngn = δnknhn = kn−1∂nhn

Then since kn−1 is a monomorphism, this implies hn−1φn = ∂nhn. Thus h is a chain map.
We skip construction of the cokernel as it is just dual to this.

(8). First, note that f : B → C is monic if and only if each fn : B → Cn is monic.
Similarly, f is epi if and only if each fn is epi. Then this should follow from the construction
of the kernel as the kernel at each step and same for cokernel.

3 Homology Functors

As noted already, the study of an abstract abelian category is highly motivated by the
category of R-modules. There, the reader has probably seen that we have functors Hn from
chain complexes of R-modules back to R-modules. These functors are useful in many ways,
such as giving algebraic invariants like singular homology in algebraic topology. If possible,
we would like to generalize these functors to an arbitrary abelian category.

We wish to construct homology functors Hn : Kom(A) → A. In the category of R-
modules, this is greatly simplified because we can conclude that im dn+1 ⊂ ker dn using only
set-theoretic notions, but this becomes more complicated if A is a general abelian category.
Here is our plan.

1. Define a canonical map im dn+1 → ker dn, and then define Hn(C) to be the cokernel of
the this map. (The object associated with the cokernel, not the morphism.)

2. Given a chain map f : B → C, construct a “canonical” morphism Hn(B)→ Hn(C).

3. Show that Hn is an additive covariant functor.

3.1 Definition of Hn on Complexes

Let C = (Cn, dn) be a chain complex in an abelian category A. Let k : ker dn → Cn be the
kernel of dn. Let q : Cn → coker dn+1 be the cokernel of dn+1. Let i : im dn+1 → Cn be
the kernel of q, which is also the image of dn+1. Let d̃n : Cn+1 → im dn+1 be the canonical
epimorphism (see Proposition 1.5).
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coker dn+1

. . . Cn+1 Cn Cn−1 . . .

im dn+1 ker dn

d̃n+1

dn+1 dn

q

i
k

Since C is a chain complex, dndn+1 = 0. By the proposition, id̃n+1 = dn+1, so dnid̃n+1 = 0.
Since d̃n+1 is an epimorphism, this implies that dni = 0. Then by the universal property of
k being the kernel of dn, there is a unique map φ : im dn+1 → ker dn fitting in the following
commutative diagram.

Cn

ker dn Cn−1

im dn+1

dn
k

0i

φ

0

This map φ is what we call the canonical map im dn+1 → ker dn. As we said, we then define
Hn(C) to be the cokernel of φ.

Example: We want to confirm that this coincides with the usual homology functor when A
is R-modules. In this concrete setting, k : ker dn → Cn is the inclusion map, and d̃n+1 = dn+1,
and φ is also the inclusion im dn+1 ↪→ ker dn. In the category of R-modules, the cokernel
of a map is the target mod the image. Since φ is injective, imφ ∼= im dn+1, so Hn(C) =
ker dn/ imφ = ker dn/ im dn+1, as it should be.

3.2 Definition of Hn on Chain Maps

Now we define how our alleged functor Hn acts on chain maps. Let f = (fn) : B → C be a

chain map. Let ` : ker δn → Bn and k : ker dn → Cn be the respective kernels. Let d̃n+1, δ̃n+1

be the respective canonical maps to the image, and let φ, ψ be the respective canonical maps
used to construct Hn(B), Hn(C). These all fit into the follow commutative diagram. (All
squares commute.)

im δn+1 ker δn cokerψ = Hn(B)

. . . Bn+1 Bn Bn−1 . . .

. . . Cn+1 Cn Cn−1 . . .

im dn+1 ker dn cokerφ = Hn(C)

ψ

`δ̃n+1

δn+1

fn+1 fn

δn

fn−1

d̃n+1

dn+1 dn

φ

k
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We will construct maps α, β making the following diagram commute.

im δn+1 ker δn cokerψ = Hn(B)

im dn+1 ker dn cokerφ = Hn(C)

β

ψ

α

φ

First, we construct α. Since dnfn` = 0, by the universal property of ker dn, there is a unique
map α : ker δn → ker dn so that kα = fn`.

Cn

ker dn Cn−1

ker δn

dn
k

0fn`

α

0

Now we construct β. Observe that

0 = qdn+1fn+1 = qfnδn+1 = qfn`ψ

By the universal property of im dn+1, there is a unique map β : im δn+1 → im dn+1 making
the following diagram commute.

Cn

ker dn coker dn+1

ker δn

q
i

0fn`ψ

β

0

We are now in the following situation.

im δn+1 ker δn cokerψ = Hn(B)

im dn+1 ker dn cokerφ = Hn(C)

β

ψ

α

φ

The above diagram commutes because: fn`ψ = iβ and kα = fn`, so kαψ = fn`ψ = iβ =
kφβ, this implies αψ = φβ since k is monic. Then (cokerφ) ◦ αψ = (cokerφ) ◦ φβ = 0,
and then by the universal property of the cokernel Hn(B), there is a unique map Hn(f) :
Hn(B)→ Hn(C) making the following diagram commute.

ker δn

im δn+1 Hn(B)

Hn(C)

cokerψ (cokerφ)◦α

0

ψ

0

Hn(f)

11



This is our definition of the morphism Hn(f).

3.3 Hn is a Functor

Proposition 3.1. Hn is an additive covariant functor.

Proof. First, we show that Hn(IdC) = IdHn(C). This is relatively clear from the construction.
The unique maps α : im dn+1 → im dn+1 and β : ker dn → ker dn must be the respective
identity maps, so Hn(Id) must be the identity map on cokerφ.

Let A,B,C chain complexes and g : A→ B and f : B → C be chain maps. We need to
verify that Hn(g ◦ f) = Hn(g) ◦ Hn(f). Let A = (An, ∂n), B = (Bn, δn), C = (Cn, dn). We
observe that all of the universal property constructions behave nicely with composition of
chain maps, so by looking at the following diagram, it is not hard to convince ourselves that
Hn(g) ◦Hn(f) = Hn(g ◦ f).

im ∂n+1 ker ∂n Hn(A)

im δn+1 ker δn Hn(B)

im dn+1 ker dn Hn(C)

Hn(g)

Hn(f)

Finally, we need to check that if f1, f1 ∈ Hom(C,D) then Hn(f + f ′) = Hn(f) +Hn(f ′). As
above, we are too lazy to work out the details, but all of the universal property constructions
are compatible with the Hom-set addition operations, so

im δn+1 ker δn Hn(B)

im dn+1 ker dn Hn(C)

β+β′

ψ+ψ′

α+α′ Hn(f+f ′)=Hn(f)+Hn(f ′)

φ+φ′
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